Talk w Amira: More about algebraic spaces:

(§ 5.4. Basic properties of algebraic spaces Fix a scheure S. base

Pef: (bor aly. spaces) Let P = property of schemes, Stable Da

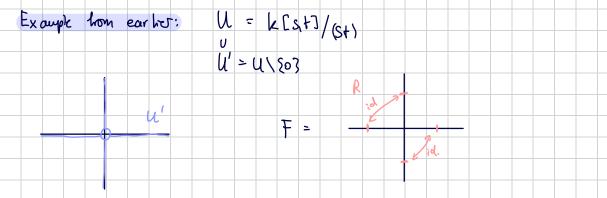
property

JIEL

Def: (Morphisms) Let
$$I: X \to Y$$
 be a morphism of alg. spaces,
repres. by schemes and $P = prop. of morph. Stable in Et. topology,then if has a properly P if there is an Etale cover $V \to Y$ and
the projection $V \times_{X} X \to V$ has property P .$

e.g: P: proper, dominant, grass-compact, embedding, open / closed embedding
(*) Pecall, that this oneans: (Olsson duf. 5.1.3)
1) P is stable under base change.
2) For all f: X-3Y in (Sch/S) and creary Eldle correst
2) For all f: X-3Y in (Sch/S) and creary Eldle correst
2) For all f: X-3Y in (Sch/S) and creary Eldle correst
2) A has P on f: X-3Y,
$$\rightarrow$$
 Y: have P V:
Rink1: The two dif's above are equivalent to the (apriori Shoryes)
statement that X or l: X-4Y has P iff for eveny Etale
Cover the base change has P. (Debails he: Alpois whes, ch.12)
no use diagonal morphism to define various separation properties of morphisms:
4 doi's weak to require that f: X-9Y repres. by Scheman
bef: A morphism f: X-9Y of alg. spaces/s is quasi-separated (resp.
locally Separated, separated) if the diagonal morphism:
 $\Delta x/y$: X \rightarrow X \times_7 X
is quasi-coupact (resp. an embedding, a closed embedding)
An alg space X/s is quasi-separated (resp. locally Sep. Sep.) if
the structure morphism X-9S is quasi-compact (resp. lac. Sep. Sep.)

Subtlety: Whe that
$$\Delta_{XYY}: X \to X \times_Y X$$
 is representable by schemes, since
 $\Delta_X: X \to X \times_X X$ is there precisely:
Let T be a class and $T \to X \times_Y X$ a morphism, since $X \times_Y X \hookrightarrow X \times_X X$
is a none, we obtain an isomorphism: $X \times_{\Delta_{XYY}X \times_Y X} T \cong X \times_{\Delta_{XY}X \times_X X} T$
this is a scheme be. As is topological to be. As is topological topological



UILU'= R ~ U×U Elate eq. relation.

Claim: F is locally sep., but not separated. R C > U × U (image = U'×U') Consider the cartesian diagram: $\begin{array}{c}
 & \pi \downarrow \epsilon + \\
 & \overline{\tau} \downarrow$ Per def., we have AF is an enhealdy, but not closed. => F is locally separated, but not separated.

Def: Let P = prop. of marph. of schemes, stable + local on damain in Etale topology. Lat f: X -> Y mosph. of aly. spaces. Then I has P ⇒ J étale corrers v: V → Y and u: U→X, sth: $U \times_{\gamma} V \rightarrow V$ has property P. recall Leures S.19. , sphere X aly space => any T -> X ~3 representate my selous (bc. Ax is repen.) Recall: Stuble on donein: VF: X -> Y in Elis and any eta r care [X; [≭]5 X]: Phas P => Poxi has P. Applicable los: Etale, Flat, smooth, surjectine, locally of finite type etc Remark / Exercise: J& f: X -> Y is repres. by schemes and J= stable + lac on doman them this deft definition in the beginning conicide.

Some global properties involving quasi-compartness

~> Note: guasi-coupacturess is not a morphism of scheres

Stable in Etale topology, no it hasn't been def yet.

Deg: · X aly space /s quasi-coupact <>] Ehle cover U → X with U quasi - corpact.

• X noeth => locally noeth + guari-coupact. (stable with wp.) bo Emb bp)

• Let $f: X \rightarrow Y$ be a morphism of alg. spaces $/_S$. Then: 3 f quasi-coupact <> For any Y' >> Y the alg.

Space X'= X×y Y' is guasi-coupact.

· f: X + Y is of fuite type (=) f q. c. and locally of thite type (seure of Dif 2)

Rimle: Jf f: X -> Y morph of alg spaces = repres. hy schemes

=> Ref 3 = Ref ()

§ 5.5: Algebraic spaces are Eppf sheavers

thm: Let X ke an alg space / S with quasi-compact diagonal. Then X is a sheaf wrt. the fppf-topology on (suh/s).

Rmh:

1) some authors include quasi-corpactness of diagonal into their def of all space (=> Ax is questi-attine) and this worker descent arguments earrer ______ shulls proj. does not require that note ______ As quasi-proj. 2) The can show that defining alg spaces as a sheaf on (Sch/S), is equivalent to the definition of alg. spaces as sheeves on (Sch/s) Et. (See Stacks Project: [076M]).