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1 Introduction

When studying geometric objects a typical invariant to consider is the amount of ‘holes’ it
has. For topological spaces this is done using the homotopy groups. In particular, we are
interested in the fundamental group. The fundamental group ‘detects holes’ by studying
maps from the circle into the space up to a deformation called homotopy. This homotopy
relies on the topology of S1 × I1, which is Euclidean in nature. Therefore, when trying
to apply such an invariant to a different geometric setting, say algebraic varieties, it does
not play nicely with the very non-Euclidean Zariski topology.

Thus, we have to find a way to replicate the topological fundamental group in the setting of
algebraic varieties. To compute the topological fundamental group one can use the theory
of covering spaces. Which states that the topological fundamental group is isomorphic to
the group of deck transformations of the universal cover. This can in fact be used as the
definition of the topological fundamental group. This is a much more algebraic approach
to defining the fundamental group. Thus, we can try to carry it over to algebraic geometry.

First, we will define the equivalent of covering maps, namely étale morphisms. We will
find that we do not, in general, have a single universal cover. Instead, we have a system
of covers which are universal in some sense. Taking the limit of the system of associated
deck transformations yields us our étale fundamental group.

This process can be done in the setting of algebraic varieties, which allows us to compute
the étale fundamental group of elliptic curves, and can also be done in the setting of
schemes, which are a generalization of algebraic varieties and allow us to tackle a boarder
family of geometric objects. We assume knowledge of both algebraic varieties and schemes,
however a short introduction to schemes is given below. We also assume basic familiarity
with commutative algebra. Any standard introductory text on commutative algebra covers
more than enough, see for example [AM69].

Lastly, we will dive into étale cohomology. A full exposition of this theory is out of scope.
We discuss a result relating the étale fundamental group and the first étale cohomology
group.

1Where S1 is the real unit circle and I = [0, 1] the unit interval.
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2 Preliminaries

2.1 Schemes, briefly

We recall the basics of scheme theory. In this document, any ring is commutative and
unital unless otherwise specified, and homomorphisms preserve 1. If A is a ring, we write
a ⊴ A to mean that a is an ideal of A. The category of rings and ring homomorphisms is
denoted Ring. If R is some ring, the category of R-algebras is denoted R-Alg.

A ringed space is a topological space X equipped with a sheaf of rings OX on X. We
denote the restriction homomorphisms of this sheaf by resU,V : OX(U) → OX(V ) (where
V ⊆ U ⊆ X open) if it is necessary to name them. If φ : X → Y is a continuous map,
the pushforward of OX along φ is the sheaf φ∗(OX) on Y given on open subsets V ⊆ Y
as φ∗(OX)(V ) = OX(φ−1(V )), and whose restriction homomorphisms are those of OX . A
morphism between ringed spacesX → Y is a pair (φ,φ♯), where φ : X → Y is a continuous
map and φ♯ : OY → φ∗(OX) is a morphism of sheaves over Y .

Let X be a ringed space and let p ∈ X. The stalk of X at p is the ring

Op,X =
{
(U, f) : U ⊆ X open, f ∈ OX(U)

}/
∼,

where (U, f) ∼ (V, g) whenever there exists an open neighborhood W ⊆ U ∩ V of p such
that resU,W (f) = resV,W (g). The class of (U, f) in Op,X is denoted by [U, f ], or simply
by f , where we think of f as having some ‘flexible’ domain of definition. Any morphism
(φ,φ♯) : X → Y of ringed spaces functorially induces homomorphisms between stalks

φ♯p : Oφ(p),Y → Op,X .

A locally ringed space is a ringed space X such that at every point p ∈ X, the stalk Op,X
is a local ring. We write mp,X for the maximal ideal of Op,X . We will denote the stalks
and maximal ideals by Op and mp if the ambient space X is clear from context.

For local rings A and B with maximal ideals mA,mB, a local homomorphism from A to
B is a ring homomorphism φ : A → B such that φ(mA) ⊆ mB. A morphism of locally
ringed spaces is a morphism of ringed spaces (φ,φ♯) : X → Y such that for all p ∈ X we

have that φ♯p : Oφ(p) → Op is a local homomorphism. We will also call φ itself a morphism
of locally ringed spaces, and unless otherwise specified we assume that its corresponding
sheaf morphism is denoted φ♯.

In the following, let A be any ring. We define a locally ringed space, called its spectrum,
in several steps, following section II.2 in [Har77]. As a set, the spectrum of A is given by

SpecA =
{
p ⊴ A : p is prime

}
.

For an ideal a ⊴ A, define its corresponding Zariski-open set as

Da =
{
p ∈ SpecA : a ̸⊆ p

}
.

Subsets of SpecA of this form are closed under arbitrary unions and finite intersections,
and they define the Zariski topology on SpecA.

For f ∈ A, define its corresponding distinguished open set as

Df =
{
p ∈ SpecA : f ̸∈ p

}
.
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The distinguished open sets form a basis for the Zariski topology.

Let S ⊆ A be a set of elements closed under multiplication, containing 1. The localization
of A by S is the ring

S−1A =

{
f

g
: f ∈ A, g ∈ S

}
.

Here fraction expressions f/g and f ′/g′ are identified if there exists h ∈ S such that
h(fg′ − f ′g) = 0. We consider two special cases. For a single element f ∈ A, the set
S = {1, f, f2, . . . } is multiplicatively closed. The localization of A by S is denoted A[f−1].
If p ∈ SpecA is a prime ideal, then S = A\p is multiplicatively closed, and the localization
of A by S is denoted Ap, which we call the localization of A at p. Then Ap is a local ring,
with maximal ideal pAp.

Let U ⊆ SpecA be open. A regular function on U is a function

f : U →
⊔
p∈U

Ap,

such that for all p ∈ U we have that f(p) ∈ Ap, and f is locally a quotient of elements of
A. More precisely, for every p ∈ U there exists some open neighbourhood V ⊆ U of p and
elements g, h ∈ A such that for all q ∈ V we have h ̸∈ q and f(q) = g/h ∈ Aq.

Let the structure sheaf OSpecA of SpecA be given as follows. Let U ⊆ SpecA be open.
Define

OSpecA(U) =
{
f : U →

⊔
p∈U

Ap : f is regular
}
.

If V ⊆ U are open subsets of SpecA, define

resU,V : OSpecA(U)→ OSpecA(V )

by restriction. That is, for p ∈ V and f ∈ OSpecA(U) we have resU,V (f)(p) = f(p). We
write f |V = resU,V (f). This defines a sheaf of rings on the topological space SpecA.
Note that we have a well-defined evaluation homomorphism Op,SpecA → Ap given by
[U, f ] 7→ f(p).

We can alternatively represent the regular functions on distinguished opens and the stalks
of regular functions of a spectrum as follows.

Proposition 2.1. For f ∈ A and g ∈ A[f−1], consider the regular function cg : Df →⊔
p∈Df

Ap that maps p ∈ Df to g ∈ Ap. Then the map A[f−1] → OSpecA(Df ) sending g
to cg is an isomorphism of rings.

For p ∈ SpecA, the evaluation map Op,SpecA → Ap sending [U, f ] to f(p) is an isomor-
phism of rings.

Proof. See [Har77, proof of Proposition 2.2].

Definition 2.2. An affine scheme is a locally ringed space (X,OX) isomorphic to a spec-
trum (SpecA,OSpecA) for some ring A. A scheme is a locally ringed space (X,OX) that
is locally isomorphic to an affine scheme. That is, there exists some open cover (called an
affine cover) (Ui)i∈I of X and rings (Ai)i∈I such that (Ui,OUi)

∼= (SpecAi,OSpecAi) for
all i ∈ I.
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A morphism of schemes is a morphism of the underlying locally ringed spaces. The cate-
gory of schemes is denoted Sch.

If α : A → B is a ring homomorphism, we can define a corresponding scheme morphism
φ : SpecB → SpecA. As a continuous map, φ sends a prime ideal p ⊴ B to its preimage
φ(p) = α−1(p), and the sheaf morphism φ♯ sends a regular function f : U →

⊔
p∈U Ap

in OSpecA(U) to the function φ♯(f) : φ−1(U) →
⊔

q∈φ−1(U)Bq, q 7→ αq(f(φ(q))), where
αq : Aφ(q) → Bq is the local homomorphism obtained by localizing α at q.

Proposition 2.3. The associations A 7→ (SpecA,OSpecA) and α 7→ (φ,φ♯) define a fully
faithful contravariant functor from Ring to Sch.

Proof. See [Har77, Proposition 2.3].

In particular, Ring is antiequivalent to the full subcategory of Sch consisting of the affine
schemes. It also follows that a morphism φ : SpecA → SpecB between affine schemes is
fully determined by the component φ♯SpecB : OSpecB(SpecB)→ OSpecA(SpecA), which by

abuse of notation we also denote by φ♯.

If X and Y are schemes, a Y -valued point (or a Y -point for short) of X is a morphism Y →
X. The set of Y -valued points ofX is denotedX(Y ). A scheme morphism φ : Y → Z gives
rise to a set function X(Z) → X(Y ) functorially by precomposition. These associations
together define the functor of points associated toX, and a functor naturally isomorphic to
one of this form is called representable, with X its representing scheme. If A is some ring,
an A-valued point of X is a (SpecA)-valued point of X. We denote the A-valued points of
X by X(A). Composing the spectrum functor with the representable functor, we get that
any ring homomorphism α : A → B functorially induces a set function X(A) → X(B)
(note that the composition of two contravariant functors is covariant). If it is necessary
for clarity, we will refer to a point p of the topological space X as a topological point of
the scheme X.

To round out the prerequisites, we cover relative schemes. Fix a scheme S. A scheme
over S (or an S-scheme, for short) is a scheme X equipped with a morphism σ : X → S.
If R is a ring, a scheme over R is a scheme over SpecR. Any scheme is a scheme over
Z in a unique way. The structure morphism σ : X → SpecR equips the ring of global
regular functions OX(X) with the structure of an R-algebra. If R = k is a field, then
the unique stalk of Spec k is canonically isomorphic to k by Proposition 2.1, so the stalk
homomorphisms σ♯p : k → Op,X equip the stalks of X with the structure of a k-algebra.

A morphism of S-schemes from X to Y (also called an S-morphism) is a scheme morphism
φ : X → Y such that the following diagram commutes,

X Y

S

φ

σX σY

The category of S-schemes and S-morphisms is denoted S-Sch. If R is a ring and A is
an R-algebra, the spectrum SpecA is an R-scheme in a canonical way, and the spectrum
functor induces a fully faithful contravariant functor from R-Alg to R-Sch.

We also define a relative variant of the functor of points of a scheme. For S-schemes X,Y ,
define the Y -valued points of X relative to S as the set of S-scheme morphisms Y → X,
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denoted XS(Y ), or XA(Y ) if S = SpecA, or simply by X(Y ) if the context is clear. In
the same way as in the non-relative case, any S-scheme X gives rise to a contravariant
functor from S-Sch to Set. This finishes the prerequisites on scheme theory.

2.2 The topological fundamental group

There is an analogy between the topological fundamental group and the étale fundamental
group. Thus, we first recall what the topological fundamental group is, and then move on
and define the étale fundamental group.

Definition 2.4. [Kun17, Definition 1.1] Let X be a real or complex manifold and x0 ∈ X.
The topological fundamental group is the set homotopy classes of maps from S1 to X,
with concatenation as its group operation. We denote it by

π1(X,x0).

As stated in the introduction this invariant does not play well with algebraic varieties,
since they come equipped with the Zariski topology. Consider the following example:

Example 2.5. Consider the ring R = R[x, y]/(x2 + y2 − 1), the coordinate ring of the
circle, SpecR will be the real unit circle. We expect to find π1(SpecR, p) = Z, however
this is not the case.

For any integral domain R and any p ∈ SpecR, we have that π1(SpecR, p) = 0. Consider
the loop γ : I → SpecR which sends 0 and 1 to p and the rest to (0), it is straight forward
to show that this is continuous and any other loop is homotopic to it. Giving us that the
fundamental group is trivial.

Aside from the invariant not behaving the way we want it to, there is a moral argument
to be made that this construction of invariant does not rely on objects/morphisms from
the category of schemes or algebraic varieties. The morphisms this invariant is defined
with exist in the category of topological spaces (up to homotopy), while the morphisms
we consider carry information about the sheaves as well.

One approach to remedy this issue is by constructing a form of homotopy within algebraic
geometry. This is what motivic homotopy theory concerns itself with, by replacing the
the unit interval [0, 1] with the affine line A1.

Another approach would be to see if we can define the fundamental group in such a way
that we do not use homotopy but instead use techniques which can be more easily copied
over into another category. Luckily, we can turn to covering theory to find the answer.
This theory has its own ’niceness’ conditions, so we will restrict ourselves to topological
manifolds.

The main idea is as follows: to compute the fundamental group of a space X at a point x0,
we can look at larger spaces Y which ’cover’ X. We can take a loop in X and try to lift it
up into Y . However, its endpoints may end up in different places. It turns out, that this
lifted path defines an automorphism on the fiber of x0. Studying these transformations
gives us information about the fundamental group of X.

We start by defining what a covering is.

Definition 2.6. [Kun17, Definition 1.3] Let X and Y be manifolds and

ψ : Y → X

6



be a surjective map between them. Then the pair (Y, ψ) covers X if given a point x ∈ X,
and U ⊂ X an open subset containing x, there exist open subsets Uα ⊂ Y such that

ψ−1(U) =
⊔
α

Uα

and moreover, ψ|Uα : Uα → U is a homeomorphism.

Example 2.7. Consider X = S1 as the unit circle of the complex plane. We have the
covers (S1, z 7→ zn) and (R, t 7→ e2πit).

Definition 2.8. For a space X, Cov(X) is the category of covers of X, whose morphisms
are those morphisms between the covers which commute with projection.

Proposition 2.9. Let X be a manifold and (Y, ψ) a covering. Then for any loop γ : S1 →
X with γ(1) = x0 ∈ X and any y0 ∈ ψ−1(x0), there exists a unique path γ̃ : I → Y with
γ̃(0) = y0 and ψ ◦ γ̃ = γ.

Example 2.10. Let γ : S1 → S1. Here we cover an example of a loop in S1 getting lifted
to a path in the helix, perhaps with an image?

As we have seen, this lift defines a function on the fiber of x0

Proposition 2.11. The function on the fiber induced by a loop γ depends only on the
homotopy class of γ.

This motivates us to look at the fundamental group of X, as this is the set of loops up
to homotopy endowed with a group structure. It turns out that the induced functions
respect this group structure. This is summarized in the following proposition.

Proposition 2.12. The lifting functions define a group action where the fundamental
group π1(X,x0) acts on the fiber of x0.

Recall that a set together with a group action from the group G is called a G-set. We can
summarize our findings in the following definition.

Definition 2.13. The fiber functor Fib : Cov(X,x0)→ π1(X,x0)−Set, is defined to send
a covering space (Y, φ) to the fiber φ−1(x0) and a morphism of covers α to its restriction
to the fibers.

Now from the theory of covering spaces we know, given our ’niceness’ conditions, of the
existence of a universal cover.

Definition 2.14. A universal cover (X̃, ψ) of X is a cover for which X̃ is simply con-
nected.

This universal cover is unique up to isomorphism so we may sometimes refer to it as the
universal cover. Aside from being unique, it has a very important property regarding its
group of automorphisms Aut(X̃), where the automorphisms are of course taken to be in
the category Cov(X).

Proposition 2.15. [Hat03, Prop 1.39] For a universal cover (X̃, ψ) of X, we have that

Aut(X̃) ∼= π1(X,x0).

This definition of universal cover is in some sense still a very topological definition, there-
fore we would like to relate it to the more categorical machinery we have constructed, the
fiber functor. To this end we introduce the following definition.
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Definition 2.16. A functor F : C → Set is called representable if there exists an object
X ∈ C such that for any object Y ∈ C

F (Y ) ∼= HomC(X,Y )

in a natural way, i.e. the functors F and HomC(X, ) are naturally isomorphic. Here X
is said to represent F .

Proposition 2.17. [Mil13] Let X̃ be a universal cover of X, and let x0 ∈ X. Then Fib
is represented by X̃.

With this we have managed to detach the topological parts from the definition of the
fundamental group and rephrase it in a categorical fashion. This, in essence, is enough to
define the fundamental group in a different setting, however, we will find that our fiber
functor will not always be representable. Thus we will take it one step further and equate
the topological fundamental group to the automorphisms of the functor itself.

Proposition 2.18. [Mil13] Let F : C → Set be a functor represented by X ∈ C. Then

AutSetC(F )
∼= AutC(X),

where F is taken in the category of functors from C to Set, thus its automorphism are
natural isomorphisms between itself.

Which gives us our final result,

Aut(Fib) ∼= π1(X,x0).

Which we shall take as our motivation to define the Étale fundamental group.

2.3 Étale morphisms

Having seen the construction of the topological fundamental group we will now try to
mirror this definition using means in algebraic geometry. The first order of business is
to define what will replace our coverings, for which we recall three definitions. First we
discuss unramifiedness.

Definition 2.19. [Mil13, page 20] Let A,B be local rings and ψ : A → B a local ring
homomorphism. Let mA and mB be the maximal ideals of A and B respectively. We call
ψ unramified if

ψ(mA)B = mB

and B/mB is a finite separable field extension of A/mA.

Definition 2.20. [Mil13, page 20] A morphism of schemes ψ : Y → X is unramified if
it is of finite type and the map

Oψ(y),X → Oy,Y
is unramified for all y ∈ Y .

This is of course a very algebraic definition, however, it has a nice geometric interpretation.

Proposition 2.21. Let f : X → Y be an unramified morphism of schemes and let x ∈ X
be any point. Then the induced map on tangent spaces dfx : TxX → Tf(x)Y is injective.

Next we discuss flatness.

Definition 2.22. Let A be a ring. An A-module B is flat if the functor (−)⊗B is exact.
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Definition 2.23. [Mil13, page 19] Let φ : A → B a ring homomorphism. We say φ is
flat if B is a flat A-module. Here the A-module structure on B is induced by φ.

Definition 2.24. [Mil13, page 19] Let φ : Y → X be a morphism of schemes. We say φ
is flat if

Oφ(y),X → Oy,Y
is flat for all y ∈ Y.

This is again a very algebraic definition, however geometrically, when varying over the
base the fibers do not make sudden changes, i.e. for a flat morphism its fibers are all of
the same dimension.

Combining these two definitions we get a morphism that induces not only an injection on
tangent spaces, but in fact an isomorphism. Thus one can view the following definition as
a ’local isomorphism’ of sorts.

Definition 2.25. [Mil13, page 20] A morphism of schemes is an étale morphism if it is a
flat and unramified morphism. A morphism φ♯ : A→ B of rings is étale if the associated
map φ : SpecB → SpecA is étale.

However we will restrict ourselves to finite étale morphisms.

Definition 2.26. A morphism f : X → Y is called finite if there exists an open affine
cover {Ui} of Y such that each Vi := f−1(Ui) is affine and the induced map on rings

OUi(Ui)→ OVi(Vi)

makes OVi(Vi) into a finitely generated module over OUi(Ui).

Which ensures that the fibers are finite sets, and thus that X ‘covers’ Y with a finite
amount of sheets.

2.4 The Galois category and the étale fundamental group

Fix a field k, and a separable closure K of k with an embedding k ↪→ K. Applying the
spectrum functor to this embedding gets us a morphism σK : SpecK → Spec k, giving
SpecK the structure of a k-scheme. All schemes in this section are over k and all scheme
morphisms are morphisms of k-schemes.

Definition 2.27. Let S be a connected scheme. A geometric point of S is a K-point
s ∈ S(K) (relative to k).

Any morphism of schemes φ : S → T induces a function of sets φ∗ : S(K) → T (K) given
by φ∗(s) = φ ◦ s. We call φ∗(s) the pushforward of s along φ.

Fix a base connected scheme S and a geometric point s ∈ S(K). The pair (S, s) is called
a pointed scheme, analogous to a pointed topological space (X,x). To define the étale
fundamental group of (S, s), we will first construct its corresponding Galois category.

Definition 2.28. A finite étale cover of S is a pair (X, e) consisting of a scheme X
equipped with a finite étale morphism e : X → S.

We will often suppress the morphism e from the notation, so we refer to X as an étale
cover of S. If Xα is some étale cover decorated with an index, then eα will denote its
defining étale morphism to S.
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For an étale cover X, consider the set

F (X) =
{
x ∈ X(K) : e∗(x) = s

}
.

We call this the fiber of X over s. If we want to specify the base point of S in the notation,
we write Fs(X). A pointed cover of (S, s) is a pair (X,x) where X is an étale cover of S
and x ∈ F (X).

For an étale cover X, let Aut(X) denote the group of S-automorphisms of (X, e). Then
Aut(X) acts on F (X) from the left, with the action given by

ψ · x = ψ∗(x).

Proposition 2.29. For any finite étale cover X of S, F (X) is a finite set.

Proof. This is generally true for fibers of finite morphisms. The general idea is that
the points of F (X) correspond to the points of the underlying topological space of the
pullback scheme X ×S Specκ(s) (where κ(s) is the residue field of S at the image of the
geometric point s), which is affine. Specifically, by finiteness it is the spectrum of a finite-
dimensional algebra over k, which has finitely many prime ideals, so its spectrum finitely
many points.

Proposition 2.30. If X is a connected finite étale cover of S, then Aut(X) acts freely on
F (X), meaning that if x ∈ F (X) and ψ ∈ Aut(X) are such that ψ · x = x, then ψ = idX .

Proof. [MA67, Lemma 4.4.1.6(iii)].

Definition 2.31. Let the Galois category FÉt/S of S be the category whose objects are
finite étale covers of S and whose morphisms from X1 to X2 are those scheme morphisms
φ : X1 → X2 such that

X1 X2

S

e1

φ

e2

commutes.

Let FÉt∗/S denote the category of pointed finite étale covers (X,x) of S. The morphisms
of this category are those morphisms of covers that preserve the base point. Note that we
have an evident forgetful functor FÉt∗/S → FÉt/S.

Let FinSet denote the category of finite sets.

Definition 2.32. The fiber functor of (S, s) is the functor F : FÉt/S → FinSet that
maps a finite étale cover X onto the fiber F (X), and a cover morphism φ : X1 → X2 onto
the induced function φ∗ : F (X1)→ F (X2).

Definition 2.33. The étale fundamental group of (S, s), denoted π1(S, s), is defined as
the automorphism group Aut(F ) of the fiber functor F of (S, s). That is, the set of natural
isomorphisms from F to itself, with composition as group operation.
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Technically, as the Galois category FÉt/S is a large category, the collection of such natural
isomorphisms is not a set. To avoid such set-theoretic size issues, we may assume that
every scheme is contained in some set-theoretic universe U of ‘small’ sets, so that the
above automorphism group is a ‘large’ set. We will not consider these issues in any more
depth.

Explicitly, an element of π1(S, s) is a family of bijections fX : F (X) → F (X) indexed by
the finite étale covers X → S, such that for any cover morphism φ : X1 → X2 we have
that

F (X1) F (X1)

F (X2) F (X2)

fX1

φ∗ φ∗

fX2

commutes.

This description of π1(S, s) is not very practical, as a computation requires constructing
natural bijections for every single possible finite étale cover. The rest of this section is
devoted to a technique for calculating an explicit description of the fundamental group.

For calculation, let us first consider the case that the fiber functor F is a representable
functor, as in the topological case. Let us call a finite étale cover e : X → S a universal
cover if F is naturally isomorphic to Hom(X,−).

Proposition 2.34. If F is represented by a finite étale cover e : X → S, then

π1(S, s) ∼= Aut(X).

Proof. By the Yoneda lemma, the natural transformations Hom(X,−)⇒ Hom(X,−) are
in a natural bijection with the cover morphisms X → X. It follows that the automorphism
group of Hom(X,−) is isomorphic to that of X. Because F and Hom(X,−) are naturally
isomorphic, their automorphism groups are isomorphic as well.

In general, such a representing object usually does not exist. We would still like to think
of the fundamental group π1(S, s) as the automorphism group of some more general sort of
‘universal cover’. Although this might not be a single finite étale cover, we can nonetheless
construct a system of finite étale covers that will represent F .

Recall that we can view any preordered set (Λ,⪯) (i.e. a set equipped with a reflexive
transitive relation) as a category, whose objects are the elements of Λ, and which has a
unique arrow from i to j if and only if i ⪯ j.

Definition 2.35. A directed set is a preordered set Λ such that for all i, j ∈ Λ, there
exists at least one k ∈ Λ with i ⪯ k and j ⪯ k.

Definition 2.36. Let C be a category, and let Λ be a directed set. An inverse system in
C indexed by Λ is a functor C : Λop → C. Explicitly, a direct system associates to each
i ∈ Λ an object Ci in C, and to each pair i, j ∈ Λ with i ⪯ j a C-morphism φij : Cj → Ci,
satisfying φii = idCi for all i, and if i ⪯ j ⪯ k, then the diagram

Ck Cj

Ci

φjk

φik
φij

11



commutes. The morphisms φij we call system morphisms.

We define inverse systems in order to talk about their limits. We will need the limits of
inverse systems in the category of groups.

Definition 2.37. Let G = (Gi) : Λ
op → Grp be an inverse system of groups, with system

homomorphisms denoted hij : Gj → Gi. We define the limit of (Gi) as the group

lim
←−
G = lim

←−
Gi =

{
(xi) ∈

∏
i∈Λ

Gi : if i ⪯ j, then hij(xj) = xi

}
.

We equip lim
←−

Gi with coordinatewise group operations.

Definition 2.38. We say that an inverse system (Xi, xi) : Λ
op → FÉt∗/S is a universal

cover system for (S, s) if for every finite étale cover e : X → S there exists i ∈ Λ and a
cover morphism φi : Xi → X.

In order to calculate with universal cover systems, we need their covers to satisfy the
following property.

Definition 2.39. A Galois cover of S is a finite étale cover X such that X is connected
and Aut(X) acts transitively on F (X).

Note that by Proposition 2.30, the action of Aut(X) on F (X) is both free and transitive
in the case that X is a Galois cover.

If (X1, x1), (X2, x2) are pointed Galois covers of S, then a cover morphism φ : X1 → X2

induces a group homomorphism φ̃ : Aut(X1) → Aut(X2) as follows. For ψ ∈ Aut(X1),
consider the point ψ · x1 ∈ F (X). By pushforward, φ sends this to φ∗(ψ · x1) ∈ F (Y ).
Because X2 is a Galois cover, there exists a unique ψ′ ∈ Aut(X2) such that ψ′ · x2 =
φ∗(ψ · x1). We define φ̃(ψ) = ψ′. This does indeed provide a group homomorphism,
though note that its definition is not independent of the choices of x1, x2.

This definition is functorial, so it gives a covariant functor Aut from the category of pointed
Galois covers of S to the category of groups.

Theorem 2.40. If (Xi, xi) : Λ
op → FÉt∗/S is a universal system of pointed Galois covers

for (S, s), then
π1(S, s) ∼= lim

←−
Aut(Xi).

Proof. Consider an automorphism θ ∈ Aut(Fs) = π1(S, s). For every finite étale cover
X it has a component θX : F (X) → F (X). For each i ∈ Λ, this provides a function
F (Xi) → F (Xi). Using the fact that the Xi are Galois covers, let ψi ∈ Aut(Xi) be the
unique automorphism such that ψi · xi = θXi(xi).

We claim that the indexed family (ψi)i∈Λ is an element of lim
←−

Aut(Xi). To see this, let

i ⪯ j, and consider the cover morphism φij : Xj → Xi. Because the covers are pointed
and Galois, we have the induced group homomorphism φ̃ij : Aut(Xj) → Aut(Xi). We
want to show that φ̃ij(ψj) = ψi. Consider where these automorphisms send xi. We have

φ̃ij(ψj) · xi = (φij ◦ ψj)∗(xj) = ((φij)∗ ◦ θXj )(xj)

= (θXi ◦ (φij)∗)(xj) = θXi(xi) = ψi · xi.

Because Xi is connected, two automorphisms agreeing on a point implies that they are
equal, so indeed (ψi)i∈Λ ∈ lim

←−
Aut(Xi).

12



To see that this map π1(S, s) → lim
←−

Aut(Xi) is a group homomorphism, simply note the

following. If θ, θ′ ∈ π1(S, s), and for i ∈ Λ we have that (ψi)i∈Λ and (ψ′i)i∈Λ are the
indexed families uniquely defined by ψi · xi = θXi(xi) and ψ

′
i · xi = θ′Xi

(xi) for all i, then

(ψ′i ◦ ψi) · xi = (θ′ ◦ θ)Xi(xi),

so our constructed map respects composition.

We need the fact that (Xi, xi) is universal to show that this homomorphism is in fact an
isomorphism. We will construct an inverse homomorphism. Let (ψi)i∈Λ ∈ lim

←−
Aut(Xi) be

some group element. To construct the natural automorphism θ : F ⇒ F , let its components
on the Xi be given by the action of the ψi, so θXi(x) = ψi · x for x ∈ F (Xi). To turn this
into a natural automorphism of all of F , let e : X → S be an arbitrary connected finite
étale cover. Applying universality, let i ∈ Λ and φ : Xi → X be a cover morphism. By
naturality, we have that

F (Xi) F (Xi)

F (X) F (X)

θXi

F (φ) F (φ)

θX

commutes, so using the fact that X is connected we have that θX : F (X) → F (X) is the
unique bijection such that θX(F (φ)(xi)) = F (φ)(ψi · xi). Now to extend θ to arbitrary
(not necessarily connected) finite étale covers X, we use that fact that the connected
components of X are themselves finite étale covers of S. The fact that (ψi)i∈Λ is a coherent
sequence in the sense that φ̃ij(ψj) = ψi for all system morphisms φij : Xj → Xi implies
that this is a well-defined natural transformation. We have constructed the required
isomorphism.

This theorem exhibits the fundamental group of (S, s) as a profinite group, in the case
that such a system (Xi, xi) exists. As it turns out, we can always find such a system.

Proposition 2.41. Let (S, s) be a pointed scheme. Then there exists a universal system
of pointed Galois covers for (S, s).

Proof. [MA67, Lemma 4.4.1.4].

Finally, it is worth mentioning that the fibers F (X) for finite étale covers are not just mere
sets; they come equipped with an obvious left group action by π1(S, s, and the induced
functions between fibers are equivariant maps w.r.t. these actions. This leads us to state
the following result. Let DFPSet denote the category of finite discrete π1(S, s)-sets.

Theorem 2.42. If (S, s) is a connected pointed scheme, then the fiber functor

F : FÉt/S → DFPSet

is an equivalence of categories.

We will not prove this in its generality, but we prove it in the case of a point scheme Spec k
at Theorem 3.30. The general case is treated in [Len08].
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3 The example of a point

Let k be a field. In this section we investigate étale covers of Spec k. We compute the étale
fundamental group of Spec k. Finally, we show that Theorem 2.42 holds in the case of
Spec k. Topologically, Spec k is a point. Thus, the topological fundamental group of Spec k
is trivial. We show in Lemma 3.19 that the étale fundamental group of Spec k is Autk(k

sep),
i.e. the absolute Galois group of k, but with addition given by ψ1 · ψ2 = ψ2 ◦ ψ1 for all
ψ1, ψ2 ∈ Autk(k

sep). The group Autk(k
sep) has a rich structure. This further illustrates

why we consider the étale fundamental group in addition to the topological fundamental
group when investigating schemes. This section is based on the examples on page 22 and
the examples on page 28 and 29 of [Mil13]. We first discuss some commutative algebra
and introduce notation.

3.1 Étale covers of a point

Lemma 3.1. Let M be a k-module. Then M is flat.

Proof. Note that k, 0 are flat k-modules. By [AM69, Exercise 2.24], Tork1(k,M) =
Tork1(0,M) = 0. Since (1), (0) are the only ideals of k, [AM69, Exercise 2.26] gives that
M is flat.

Remark 3.2. Let R be a local ring and φ : k → R a morphism of rings. Then φ is a local
morphism of rings. From Definition 2.19, it follows that φ is unramified if and only if R
is a finite separable field extension of k.

Notation 3.3. Let A1, . . . , An be local k-algebras for some n ∈ N>0. For all 1 ≤ j ≤ n,
we denote by mj the maximal ideal of Aj . By m′j we denote the maximal ideal A1 × . . .×
Aj−1×mj×Aj+1× . . .×An of A1× . . .×An. When we talk about a product of k-algebras,
we always mean a product in the category of k-algebras, so the product carries a k-algebra
structure. If it is clear from context what the indices of a tuple in A1 × . . .× An are, we
do not state this explicitly. For example, if a ∈ Aj , then (0 . . . , 0, a, 0, . . . , 0) denotes the
tuple where the j-th component is a.

Remark 3.4. Let R1, . . . , Rn be rings for some n ∈ N>0. The prime ideals of R1×. . .×Rn
are exactly the ideals R1 × . . .×Rj−1 × p×Rj × . . .×Rn for all 1 ≤ j ≤ n and all prime
ideals p ⊆ Rj. The maximal ideals are exactly the ideals R1× . . .×Rj−1×m×Rj× . . .×Rn
for all 1 ≤ j ≤ n and all maximal ideals m ⊆ Rj.

Below, we characterize all étale covers of Spec k.

Lemma 3.5. Let φ : k → R be a ring morphism. Then φ is étale if and only if R is {0}
or R is a finite product of finite separable field extensions of k.

Proof. Note that φ is étale if R = {0}. Assume R ̸= {0}. Assume that φ is étale. Let
m ⊆ R be a maximal ideal. Then Rm is a finite separable field extension of k. This implies
that Rm has Krull dimension zero. Assume there exists a chain of prime ideals p ⊊ m ⊊ R.
Then dimRm > 0. This gives a contradiction. We conclude that dimR = 0. Since R is a
finite type k-algebra, it is Noetherian. We conclude that R is Artin, since it is Noetherian
of dimension 0. Thus R = A1 × . . .×An is a finite product of local Artin rings. Consider
the ring morphism ψ : R → Aj → (Aj)mj , where R → Aj is the j-th projection map, and
Aj → (Aj)mj is the map from the construction of the localization. Consider Aj and (Aj)mj

as k-algebras, where the k-algebra structure is given by the composition of these maps and
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φ. Let (a1, . . . , an) ∈ R\m′j . Then aj ̸∈ mj , so ψ((a1, . . . , an)) ∈ (Aj)
×
mj
. The universal

property of the localization gives a k-algebra morphism ψ̃ : Rm′
j
→ (Aj)mj . Let

a
b ∈ (Aj)mj .

Then ψ̃( (1,...,1,a,1,...,1)(1,...,1,b,1,...,1) ) = a
b . We conclude that ψ̃ is surjective. Let (a1,...,an)

(b1,...,bn)
∈ Rm′

j
such

that ψ̃( (a1,...,an)(b1,...,bn)
) = 0. Then there exists b′j ∈ Aj\mj such that ajb

′
j = 0 ∈ Aj . Then

(0, . . . , 0, b′j , 0, . . . , 0) ∈ R\m′j and (a1, . . . , an)(0, . . . , 0, b
′
j , 0, . . . , 0) = 0 ∈ R. This implies

that ψ̃ is injective. Since ψ̃ is an isomorphism and Rm′
j
is a finite separable field extension

of k, (Aj)mj is a finite separable field extension of k. Let a ∈ mj . Then a
1 is an element

of the maximal ideal of (Aj)mj , so
a
1 = 0 ∈ (Aj)mj . Then there exists b ∈ Aj\mj such

that ab = 0. This gives a = 0 · b−1 = 0. We conclude that mj = (0), so Aj is a field. In
particular, Aj = (Aj)mj is a finite separable field extension of k. We have shown that R
is a finite product of finite separable field extensions of k.
Conversely, assume that R = k1 × . . . × kn for k1, . . . , kn finite separable field extensions
of k and n ∈ N>0. By Lemma 3.1, φ is flat. Since k1, . . . , kn are finite k-modules, φ is of
finite type. Consider the j-th projection map πj : R→ kj . Let (a1, . . . , an) ∈ R\m′j . Then
πj((a1, . . . , an)) = aj ∈ k×j . The universal property of the localisation gives a k-algebra

morphism π̃j : Rm′
j
→ kj . Observe that π̃j is surjective. Let (a1,...,an)

(b1,...,bn)
∈ Rm′

j
such that

π̃j(
(a1,...,an)
(b1,...,bn)

) = ajb
−1
j = 0. Thus aj = 0. Then

(a1, . . . , an)

(b1, . . . , bn)
=

(a1, . . . , aj−1, 0, aj+1, . . . , an)

(b1, . . . , bn)
= 0.

Here we use (a1, . . . , aj−1, 0, aj+1, . . . , an)(0, . . . , 0, 1, 0, . . . , 0) = 0 ∈ R and (0, . . . , 0, 1, 0, . . . , 0) ∈
R\m′j . We conclude that π̃j is an isomorphism. Since kj is a finite separable field extension
of k, Rm′

j
is a finite separable field extension of k. This gives that R is unramified over k.

We have shown that R is étale over k.

Lemma 3.6. Let X be a scheme and φ : X → Spec k be an étale morphism. Then as
a k-scheme, X = Spec {0} or X = SpecR where R is a finite product of finite separable
field extensions of k.

Proof. Note that φ is étale if X is empty. Assume that X ̸= ∅. Let U ⊆ X be a nonempty
affine open and denote U = SpecR. Note that φ|U : SpecR → Spec k is of finite type.
The other requirement for a scheme morphism to be unramified and flatness are local
properties, so φ|U is étale. It follows that the associated ring morphism φ♯ : k → R
is étale. Lemma 3.5 implies that R = k1 × . . . × kn for k1, . . . , kn finite separable field
extensions of k and some n ∈ N>0. Since φ is étale, it is of finite type, so X is quasi-
compact. Because of this, we can cover X by a finite number of nonempty affine opens
U1, . . . , Ur such that Uj = SpecRj and Rj is a finite product of finite separable field
extensions of k for all 1 ≤ j ≤ r. Let x ∈ X, then choose some Ujx such that x ∈
Ujx . Note that Ujx = SpecRjx = Spec(kjx,1 × . . . × kjx,njx

) =
⊔

1≤s≤njx
Spec kjx,s where

kjx,1, . . . , kjx,njx
are finite separable field extensions of k and njx ∈ N>0 some positive

integer. Consider the morphism of k-schemes ψx : {x} = Spec kjx,rx → Ujx → X. Here
Spec kjx,rx → Ujx , Ujx → X denote the inclusion maps. By the universal property of the
co-product of schemes (see [FdJ23, Exercise 3.4.iii]), there exists a morphism of schemes
ψ :

⊔
x∈X Spec kjx,rx → X such that ψ|Spec kjx,rx

= ψx for all x ∈ X. Note that ψ is
a bijection by construction. Let x ∈ X, then x ∩ Uj is closed for all 1 ≤ j ≤ n. This
follows since every Uj is a finite union of open and closed points. Thus X has the discrete
topology. It follows that ψ is a homeomorphism. Cover X by opens {x} ⊆ X for all x ∈ X.
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Then ψ♯({x}) : OX({x}) → O⊔
x∈X Spec kjx,rx

(Spec kjx,rx) is an isomorphism. This follows
since OX({x}) = OUjx

({x}) = kjx,rx and O⊔
x∈X Spec kjx,rx

(Spec kjx,rx) = kjx,rx . Thus ψ is
an isomorphism of schemes. For all x ∈ X, consider the following diagram.

Spec kjx,rx
⊔
x∈X Spec kjx,rx X

Spec k

ψx

ψ

The universal property of the co-product gives that the bottom left triangle and the top
triangle commute. Since ψx is a morphism of k-schemes, the outer triangle commutes.
Since the Spec kjx,rx form an open cover of

⊔
x∈X Spec kjx,rx , it follows that the bottom

right triangle commutes. We conclude that X =
⊔
x∈X Spec kjx,rx = Spec(

∏
x∈X kjx,rx) as

a k-scheme.

Remark 3.7. Lemma 3.6 implies that all étale covers of Spec k are finite.

3.2 Étale fundamental group of a point

Notation 3.8. In this section, Y, Y1 and Y2 denote étale covers of Spec k unless specified
otherwise. The corresponding rings are denoted by R,R1, R2 respectively. If Y, Y1, Y2 are
nonempty we use the notation R = k1×. . .×kn, R1 = k1×. . .×kn1 , R2 = k′1×. . .×k′n2

where
k1, . . . , kn, kn1 , k

′
1, . . . , k

′
n2

are finite separable field extensions of k and n, n1, n2 ∈ N>0. As
in Notation 3.3, the maximal ideals of R,R1 are denoted by m′j and the maximal ideals of
R2 are denoted by n′j .

Let Ω be a separable closure of k and denote by s : SpecΩ→ Spec k the geometric point
associated to k ⊆ Ω. We will now work toward the construction of π1(Spec k, s). First,
we cover some technical results.

Lemma 3.9. Let k ⊆ k1, . . . , kn ⊆ Ω be finite separable field extensions of k for some
n ∈ N>0. Then there exists a finite Galois extension k ⊆ L ⊆ Ω such that k1, . . . , kn ⊆ L.

Proof. Since k1, . . . , kn are finite separable field extensions of k, there exist α1, . . . , αn ∈ Ω
such that k1 = k(α1), . . . , kn = k(αn). The field extension k(α1, . . . , αn) is finite and
separable over k. Thus there exists γ ∈ Ω such that k(α1, . . . , αn) = k(γ). It follows that
the splitting field over k of the minimal polynomial of γ over k is a finite Galois extension
of k that contains k1, . . . , kn.

Remark 3.10. Let k1, . . . , kn be as in Lemma 3.9. The finite Galois extension constructed
in the proof of Lemma 3.9 is the smallest Galois extension of k containing k1, . . . , kn.

Notation 3.11. We denote the image of a morphism by Im.

Lemma 3.12. Let ψ : k1× . . .×kn → Ω be a k-algebra morphism. Then ψ factors through
k1 × . . .× kn/m′j = kj for some 1 ≤ j ≤ n.

Proof. Since Ω is a field, Im(ψ) is an integral domain. It follows that ker(ψ) is a prime
ideal. This implies that ker(ψ) = m′j for some 1 ≤ j ≤ n. Since k1 × . . .× kn/m′j = kj the
result follows.
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Corollary 3.12.1. Let k1, . . . , kn be finite separable field extensions of k for some n ∈ N>0.
Let ψ : k1 × . . . × kn → Ω be a k-algebra morphism. Then Im(ψ) is contained in a finite
Galois extension of k.

Proof. From Lemma 3.12, it follows that Im(ψ) is a finite separable extension of k. Lemma
3.9 implies that Im(ψ) is contained in a finite Galois extension of k.

Consider the set

I := {L ⊆ Ω | k ⊆ L is a finite Galois extension} .

We say that L1 ≤ L2 for L1, L2 ∈ I if L1 ⊆ L2. Lemma 3.9 implies that there exists some
L ∈ I such that L1, L2 ≤ L. We conclude that (I,≤) is a directed set. Let L1, L2 ∈ I such

that L1 ≤ L2. The inclusion φ♯L1,L2
: L1 ↪→ L2 gives a morphism of schemes over Spec k,

denoted φL1,L2 : SpecL2 → SpecL1. Let Y be some scheme over Spec k. We obtain
a morphism of sets φ∗L1,L2

: HomSpec k(SpecL1, Y ) → HomSpec k(SpecL2, Y ) sending g to
g◦φL1,L2 . Observe that the sets HomSpec k(SpecL, Y ) and morphisms φ∗L1,L2

form a direct
system over I.

Notation 3.13. Let L′ ∈ I, Y a scheme over Spec k and ψ ∈ HomSpec k(SpecL
′, Y ). We

denote the image of ψ under the canonical map HomSpec k(SpecL
′, Y )→ lim−→L∈I HomSpec k(SpecL, Y )

by [ψ]. For such [ψ] ∈ lim−→L∈I HomSpec k(SpecL, Y ), when it is clear from context, we don’t

specify to what HomSpec k(SpecL
′, Y ) the ψ initially belonged.

Notation 3.14. Let ξ : Y1 → Y2 be morphism of schemes over Spec k. We denote the
induced map lim−→L∈I HomSpec k(SpecL, Y1)→ lim−→L∈I HomSpec k(SpecL, Y2) by ξ ◦ −.

Proposition 3.15. The functor F : FÉt/ Spec k → Set is prorepresented by the direct
system over I constructed above, where the sets are given by HomSpec k(SpecL, Y ) and the
morphisms are given by φ∗L1,L2

for all L ∈ I and all L1, L2 ∈ I such that L1 ≤ L2.

Proof. If Y = ∅, then F (Y ) = HomSpec k(SpecΩ, Y ) = ∅. On the other hand

lim−→
L∈I

HomSpec k(SpecL, Y ) = lim−→
L∈I
∅ = ∅.

In this case, we denote by γ(Y ) : F (Y ) → lim−→L∈I HomSpec k(SpecL, Y ) the unique bijec-
tion. Let Y → Spec k be a nonempty étale cover of Spec k. Then we have bijections
F (Y ) = HomSpec k(SpecΩ, Y ) = Homk-Alg(OY (Y ),Ω). Let ψ : SpecΩ → Y be a mor-
phism over Spec k. By Lemma 3.6, OY (Y ) is isomorphic to a finite product of finite
separable field extensions of k. By Corollary 3.12.1, there exists a finite Galois extension
of k, k ⊆ L1 ⊆ Ω such that Im(ψ♯) ⊆ L1. We obtain a commutative triangle where

i♯1 : L1 → Ω denotes the inclusion map.

OY (Y ) Ω

L1

ψ̃♯
1

ψ♯

i♯1
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From this, we get the following commutative triangle.

SpecΩ Y

SpecL1

ψ

i1
ψ̃1 (1)

Note that ψ̃1 is a morphism over Spec k. We define a map γ(Y ) : HomSpec k(SpecΩ, Y )→
lim−→L∈I HomSpec k(SpecL, Y ) by sending ψ to the equivalence class [ψ̃1]. We show that

γ(Y ) is a well-defined bijection. Let k ⊆ L2 ⊆ Ω be another finite Galois extension of k
such that Im(ψ♯) ⊆ L2. By Lemma 3.9, there exists a finite Galois extension of k, L3 ⊆ Ω
such that L1, L2 ⊆ L3. Using similar notation as before, we obtain the following diagram.

L1

OY (Y ) L3 Ω

L2

φ♯
L1,L3

i♯1
ψ̃♯
1

ψ̃♯
2

i♯3

φ♯
L2,L3 i♯2

It follows that φ♯L2,L3
◦ ψ̃♯2 = φ♯L1,L3

◦ ψ̃♯1. This gives

φ∗L2,L3
(ψ̃2) = ψ̃2 ◦ φL2,L3 = ψ̃1 ◦ φL1,L3 = φ∗L1,L3

(ψ̃1).

Thus [ψ̃1] = [ψ̃2] ∈ lim−→L∈I HomSpec k(SpecL, Y ). We conclude that γ(Y ) is well-defined.

To show that γ(Y ) is bijective, we construct an inverse. Let L1 ∈ I, using similar no-
tation as before, i∗1 : HomSpec k(SpecL1, Y ) → HomSpec k(SpecΩ, Y ) sending ψ to ψ ◦
i1 is a well-defined map of sets. Consider the map ζ : lim−→L∈I HomSpec k(SpecL, Y ) →
HomSpec k(Ω, Y ) given by sending [ψ1] to ψ1 ◦ i1. Here [ψ1] denotes the equivalence class in
lim−→L∈I HomSpec k(SpecL, Y ) of an element ψ1 ∈ HomSpec k(SpecL1, Y ). We show that ζ is

well-defined. Let ψ1 ∈ HomSpec k(SpecL1, Y ), ψ2 ∈ HomSpec k(SpecL2, Y ) such that there
exists L3 ∈ I, where L1, L2 ⊆ L3 and φ∗L1,L3

(ψ1) = φ∗L2,L3
(ψ2). Consider the following

diagram.

SpecL1

SpecΩ SpecL3 Y

SpecL2

ψ1

i3

i1

i2

φL1,L3

φL2,L3
ψ2

The triangles on the left commute and the small square on the right commutes. It follows
that the outer diamond commutes. Because of this, ζ is well-defined. We now show
that it is an inverse of γ(Y ). Let L1 ∈ I and ψ1 ∈ HomSpec k(L1, Y ). Then ζ([ψ1]) =
ψ1 ◦ i1. From the construction of γ(Y ), it follows that γ(Y )(ψ1 ◦ i1) = [ψ1]. Let ψ ∈
HomSpec k(SpecΩ, Y ). From the construction of γ(Y ), we obtain a commutative diagram
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as in (1). Then ζ ◦γ(Y )(ψ) = ζ([ψ̃1]) = ψ̃1 ◦ i1 = ψ. We conclude that γ(Y ) is a bijection.
Let ξ : Y1 → Y2 be a morphism of étale covers of Spec k and assume that Y1 ̸= ∅. Let
[ψ3] ∈ lim−→L∈I HomSpec k(SpecL, Y1). Then ξ ◦γ(Y1)−1([ψ3]) = ξ ◦ψ3 ◦ i3 = γ(Y2)

−1(ξ ◦ψ3).
We conclude that the following diagram commutes.

HomSpec k(SpecΩ, Y1) lim−→L∈I HomSpec k(SpecL, Y1)

HomSpec k(SpecΩ, Y2) lim−→L∈I HomSpec k(SpecL, Y2)

γ(Y1)

ξ◦− ξ◦−
γ(Y2)

(2)

Observe that if Y1 = ∅, then a diagram similar to the one in (2) also commutes. This
finishes the proof.

From now on, the multiplication on Autk(L) is given by ψ♯1 · ψ
♯
2 = ψ♯2 ◦ ψ

♯
1 for all L ∈ I.

Observe that this is indeed a group. Then Autk(L)× Homk-Alg(L,Ω)→ Homk-Alg(L,Ω)
given by sending (ψ♯, g♯) to g♯ ◦ ψ♯ defines a left-action on Homk-Alg(L,Ω).

Lemma 3.16. For all L ∈ I, the left Autk(L)-action on Homk-Alg(L,Ω) defined above is
free and transitive.

Proof. Let L ∈ I. Since L is a finite Galois extension of k, Homk-Alg(L,Ω) can be identified

with Autk(L). Let g
♯
1, g

♯
2 ∈ Homk-Alg(L,Ω). Then g

♯
1 ◦ (g

♯
1)
−1 ◦ g♯2 = g♯2. We conclude that

the action is transitive. Let g♯ ∈ Homk-Alg(L,Ω), ψ
♯ ∈ Autk(L) such that g♯ ◦ ψ♯ = g♯.

Then ψ♯ = (g♯)−1 ◦ g♯ = IdL. It follows that the action is free.

Lemma 3.17. For all L ∈ I, denote by SpecL → Spec k the map associated to the
inclusion k ⊆ L ⊆ Ω. Then SpecL→ Spec k is a Galois cover of Spec k.

Proof. From Lemma 3.5, it follows that SpecL → Spec k is an étale cover of Spec k.
Consider the following diagram.

AutSpec k(SpecL)×HomSpec k(SpecΩ, SpecL) HomSpec k(SpecΩ,SpecL)

Autk(L)×Homk-Alg(L,Ω) Homk-Alg(L,Ω)

The map AutSpec k(SpecL) × HomSpec k(SpecΩ,SpecL) → Autk(L) × Homk-Alg(L,Ω) is
given by sending (ψ, g) to (ψ♯, g♯). The horizontal maps are the relevant group actions.
The map HomSpec k(SpecΩ,SpecL)→ Homk-Alg(L,Ω) sends g to g♯. Note that the map
AutSpec k(SpecL)→ Autk(L) given by sending ψ to ψ♯ is an isomorphism of groups because
of the unusual group structure on Autk(L). Also note that the vertical maps are bijections
and that the diagram commutes. From Lemma 3.16, it follows that the AutSpec k(SpecL)-
action on HomSpec k(SpecΩ, SpecL) is free and transitive.

During the construction of I, we chose embeddings k ⊆ L ⊆ Ω for every L ∈ I. These
give base points SpecΩ → SpecL for all L ∈ I. Proposition 3.15 and Lemma 3.17 imply
that we have constructed a based universal cover of Spec k. Because of this and Theorem
2.40, we obtain an étale fundamental group of Spec k. We will now give a characterisation

19



of this étale fundamental group as Autk(Ω). In the remainder of this section, we assume
that the reader is familiar with Galois theory of infinite extensions. See for example
[Mil22, Chap.7].

Consider k ⊆ L1 ⊆ L2 ⊆ Ω for L1, L2 ∈ I. Denote the inclusions φ♯L1,L2
: L1 →

L2, i
♯
1 : L1 → Ω, i♯2 : L2 → Ω. This gives rise to the following diagram.

Autk(L2) AutSpec k(SpecL2) HomSpec k(SpecΩ, SpecL2)

Autk(L1) AutSpec k(SpecL1) HomSpec k(SpecΩ, SpecL1)

|L1

−◦i2

φL1,L2
◦−

−◦i1

(3)

We will show that this diagram commutes. Let ψ♯ ∈ Autk(L2). Along the top, this is
send to φL1,L2 ◦ ψ ◦ i2. Along the bottom, this is sent to ψ|L1 ◦ i1. Here ψ|L1 denotes the

automorphism of SpecL1 associated to ψ♯|L1 . Note that i
♯
2◦ψ♯◦φ

♯
L1,L2

= i♯1◦ψ♯|L1 . We con-
clude that the diagram commutes. Observe that the group morphisms |L1 : Autk(L2) →
Autk(L1) for all L1, L2 ∈ I such that L1 ≤ L2 form a inverse system. We know that for
all L1, L2 ∈ I such that L1 ≤ L2 and notation as in (3) the maps

(− ◦ i1)−1 ◦ (φL1,L2 ◦ −) ◦ (− ◦ i2) : AutSpec k(SpecL2)→ AutSpec k(SpecL1)

form an inverse system. The universal property of inverse limits gives an isomorphism of
topological groups λ : lim←−L∈I Autk(L) → lim←−L∈I AutSpec k(SpecL). In the lemma below,

we show that Autk(Ω) can still be considered a topological group after changing to our
unusual multiplication.

Lemma 3.18. Let G be a topological group. Define G′ to be the group given by G as a
set and define multiplication by a ·G′ b = b ·G a. Endow G′ with the same topology as G.
Then G′ is a topological group.

Proof. Since G → G given by sending a to a−1 is continuous, the map G′ → G′ given by
sending a to a−1 is continuous. We have the following commutative diagram.

G′ ×G′ G′

G×G

The map G′×G′ → G′ sends (a, b) to a ·G′ b = b ·Ga. The map G′×G′ → G×G sends (a, b)
to (b, a). The map G×G→ G sends (a, b) to a ·G b. It follows that the map G′×G′ → G′

is continuous, so G′ is a topological group.

Lemma 3.19. The étale fundamental group of Spec k is isomorphic as topological groups
to Autk(Ω), where ψ

♯
1 · ψ

♯
2 = ψ♯2 ◦ ψ

♯
1 gives the multiplication on Autk(Ω).

Proof. We know that Autk(Ω) → lim←−L∈I Autk(L) sending ψ to (ψ|L)L∈I is a homeomor-

phism [Mil22, Example 7.26]. It follows that it is an isomorphism under our unusual
group structures. From the argument above, it follows that Autk(Ω) ≃ lim←−L∈I Autk(L) ≃
lim←−L∈I AutSpec k(SpecL).
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Let Y be an étale cover of k. Lemma 3.19 gives a description of the étale fundamental
group as a group. We will now show that this isormophism behaves well with respect to
the group action of the étale fundamental group on F (Y ). Lemma 3.20 makes precise what
behaving well with respect to the group action of the étale fundamental group of F (Y )
means. Asssume that Y is nonempty and consider the following commutative diagram.

Homk-Alg(R,L1) HomSpec k(SpecL1, Y )

Homk-Alg(R,L2) HomSpec k(SpecL2, Y )

φ♯
L1,L2

◦− −◦φL1,L2

Note that the sets Homk-Alg(R,L) and maps φL1,L2◦− : Homk-Alg(R,L1)→ Homk-Alg(R,L2)
are a direct system over I. The universal property of direct limits gives a bijection
λ′ : lim−→L∈I Homk-Alg(R,L) → lim−→L∈I HomSpec k(SpecL, Y ). If Y = ∅, then R = {0} so

Homk-Alg(R,L) = ∅. In this case λ′ : lim−→L∈I Homk-Alg(R,L)→ lim−→L∈I HomSpec k(SpecL, Y )
is the unique bijection between emptysets.

Lemma 3.20. The following diagram commutes. If Y is nonempty, the top horizontal
map sends ((ψL)L∈I , [g]) to [g ◦ ψ−1L ]. The bottom horizontal map sends ((ψ♯L)L∈I , [g

♯]) to

[(ψ♯L)
−1 ◦ g♯].

lim←−L∈I AutSpec k(SpecL)× limL∈I HomSpec k(SpecL, Y ) limL∈I HomSpec k(SpecL, Y )

lim←−L∈I Autk(L)× limL∈I Homk-Alg(R,L) limL∈I Homk-Alg(R,L)

λ×λ′ λ′

Proof. If Y is nonempty, one can verify this by a diagram chase. If Y is empty, all sets
are the emptyset so the result follows.

Observe that the map lim←−L∈I Autk(L)× limL∈I Homk-Alg(R,L)→ limL∈I Homk-Alg(R,L)

from Lemma 3.20 defines a left-action of lim←−L∈I Autk(L) on limL∈I Homk-Alg(R,L) if Y
is nonempty. If Y is empty, we obtain the trivial group action. By extending this action
through the isomorphism Autk(Ω) ≃ lim←−L∈I Autk(L), it follows that Autk(Ω) acts on

limL∈I Homk-Alg(R,L) in a way that is compatible with the group action of the étale
fundamental group of Spec k on limL∈I HomSpec k(SpecL, Y ). This finishes our discussion
of the étale fundamental group of Spec k.

3.3 Fiber functor in the case of a point

Notation 3.21. Let G be a group and S a G-set. The permutation group of S is denoted
by Perm(S). The map from G to Perm(S) giving the group action is denoted by π : G→
Perm(S). The map from G×S to S giving the group action is denoted by −·− : G×S → S.

Definition 3.22. Let G be a topological group and S a G-set. Then S is called a discrete
G-set if − · − : G× S → S is continuous. Here S has the discrete topology and G× S the
product topology.

From section 2.4 we know that F (Y ) is a finite π1(Spec k, s)-set. We show that F (Y ) is a
discrete π1(Spec k, s)-set.
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Lemma 3.23. Let G be a group and S be a G-set. Assume G is also a topological space
(not necessarily a topological group). Endow S and Perm(S) with the discrete topology and
G×S with the product topology. If π : G→ Perm(S) is continuous, then −·− : G×S → S
is continuous.

Proof. Let s ∈ S, then

− · −−1({s}) =
{
(g, s′) ∈ G× S|g · s′ = s

}
=

⋃
φ∈Perm(S)

{
(g, s′) ∈ π−1({φ})×

{
φ−1(s)

}}
.

Note that
{
φ−1(s)

}
is open and π−1({φ}) is open since π is continuous. We conclude that

− · −−1({s}) is open in the product topology, so − · − is continuous.

Lemma 3.24. Let k1, . . . , kn be finite separable extensions of k and denote R = k1× . . .×
kn. The group morphism π : Autk(Ω) → Perm(Homk-Alg(R,Ω)) given by sending ψ♯ to
(ψ♯)−1 ◦ − is continuous. Here Perm(Homk-Alg(R,Ω)) carries the discrete topology.

Proof. Since Autk(Ω) is a topological group, it is sufficient to show that π−1(Id) is open.
Fix embeddings k1 ⊆ Ω, . . . , kn ⊆ Ω. Then k1 = k(a1,1), . . . , kn = k(an,1) for some
a1,1, . . . , an,1 ∈ Ω. Denote by ai,1, . . . , ai,ni ∈ Ω all zeros of the minimal polynomial of ai,1
over k for all 1 ≤ i ≤ n. Consider the field L = k(a1,1, . . . , a1,n1 , . . . , an,1, . . . , an,nn). We
show that π−1(Id) = AutL(Ω). Let ψ♯ ∈ AutL(Ω) and g

♯ ∈ Homk-Alg(R,Ω). By Lemma
3.12, Im(g♯) ⊆ L so (ψ♯)−1 ◦ g♯ = g♯. This gives AutL(Ω) ⊆ π−1(Id). Let ψ♯ ∈ π−1(Id).
For all 1 ≤ i ≤ n and 1 ≤ j ≤ ni, there exist g♯ : R→ Ω such that Im(g♯) = k(ai,j). Since
(ψ♯)−1 ◦ g♯ = g♯ for all g♯ ∈ Homk-Alg(R,Ω), it follows that ψ♯(ai,j) = ai,j . This gives
ψ♯ ∈ AutL(Ω). Since L is a finite extension of k, AutL(Ω) is an open subset of Autk(Ω)
[Mil22, Theorem 7.13].

Proposition 3.25. Let Y be an étale cover of Spec k. Then F (Y ) is a finite, discrete
π1(Spec k, s)-set.

Proof. We already know that F (Y ) is a finite π1(Spec k, s)-set. Lemma 3.23 and Lemma
3.24 show that Homk-Alg(R,Ω) is a discrete Autk(Ω)-set. Now Proposition 3.15, Lemma
3.19 and Lemma 3.20 give the desired result.

From Proposition 3.25, it follows that F (Y ) is actually a functor into the category of
discrete, finite π1(Spec k, s)-sets.

Notation 3.26. Recall that we denote the category of discrete finite π1(Spec k, s)-sets by
DFPSet.

We finish this section by showing that the fiber functor from the category of (finite) étale
covers of Spec k to the category of discrete, finite π1(Spec k, s)-sets is an equivalence of
categories.

Notation 3.27. Let S be a k-algebra, g♯ : S → Ω be a k-algebra morphism and k ⊆ L ⊆ Ω
a finite field extension of k such that Im(g♯) ⊆ L. Then g♯ denotes both the morphism
with image L and the map with image Ω.

Lemma 3.28. The functor F : FÉt/ Spec k → DFPSet is fully faithful.
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Proof. Let Y1, Y2 be étale covers of Spec k. If Y1 = ∅, then HomSpec k(Y1, Y2) contains one
element and HomDFPSet(F (Y1), F (Y2)) = HomDFPSet(∅, F (Y2)) contains one element.
The result follows. Now assume Y1 ̸= ∅.
From Lemma 3.6 we obtain bijections HomSpec k(SpecΩ, Y1) → Homk-Alg(R1,Ω) and
HomSpec k(SpecΩ, Y2)→ Homk-Alg(R2,Ω). Consider Homk-Alg(R1,Ω) and Homk-Alg(R2,Ω)
as objects in DFPSet. The π1(Spec k,SpecΩ)-action is induced by the bijections men-
tioned above. These bijections induce the following bijection.

HomDFPSet(HomSpec k(SpecΩ, Y1),HomSpec k(SpecΩ, Y2))→
HomDFPSet(Homk-Alg(R1,Ω),Homk-Alg(R2,Ω)).

Consider the following map of sets

Homk-Alg(R2, R1)→
HomSpec k(Y1, Y2)→

HomDFPSet(HomSpec k(SpecΩ, Y1),HomSpec k(SpecΩ, Y2))→
HomDFPSet(Homk-Alg(R1,Ω),Homk-Alg(R2,Ω)).

Here Homk-Alg(R2, R1)→ HomSpec k(Y1, Y2) sends g
♯ to g. The map HomSpec k(Y1, Y2)→

HomDFPSet(HomSpec k(SpecΩ, Y1),HomSpec k(SpecΩ, Y2)) is given by F . Let ξ♯ ∈ Homk-Alg(R2, R1).
The map above first sends ξ♯ to ξ. Secondly, ξ is send to ξ ◦ −. Finally, ξ ◦ − is send to
− ◦ ξ♯. Because of this F is fully faithful if and only if the map

Homk-Alg(R2, R1)→ HomDFPSet(Homk-Alg(R1,Ω),Homk-Alg(R2,Ω)),

given by sending ξ♯ to − ◦ ξ♯ is a bijection. We first show that this map is injec-
tive. Let ξ♯1, ξ

♯
2 ∈ Homk-Alg(R2, R1) such that − ◦ ξ♯1 = − ◦ ξ♯2. Then R1/m

′
j ≃ kj

as k-algebras. Choose an inclusion kj ↪→ Ω and consider the morphism of k-algebras

g♯j : R1 → R1/mj ↪→ Ω. Since g♯j ◦ ξ
♯
1 = g♯j ◦ ξ

♯
2 for all 1 ≤ j ≤ n1 it follows that ξ♯1 = ξ♯2.

Next, we show that the map is surjective. Let γ ∈ HomDFPSet(Homk-Alg(R1,Ω),Homk-Alg(R2,Ω)).

Let g♯j be as before. By Lemma 3.12, γ(g♯j) factors through a prime ideal n′ij of R2. It

follows that Im(γ(g♯j)) ≃ k′ij as k-algebras. Lemma 3.9 implies that there exists a finite Ga-

lois extension of k, k ⊆ L′ ⊆ Ω such that Im(g♯j), Im(γ(g♯j)) ⊆ L′. Let ψ♯ ∈ Aut
Im(g♯j)

(L′),

then there exists (ψ♯L)L∈I ∈ lim←−L∈I Autk(L) such that ψ♯L′ = ψ♯. Lemma 3.20 gives

γ((ψL)L∈I · g♯j) = γ(((ψL)L∈I · gj)♯) = γ((ψ♯L′)
−1 ◦ g♯j) = γ((ψ♯)−1 ◦ g♯j) = γ(g♯j)

(ψL)L∈I · γ(g♯j) = (ψ♯L′)
−1 ◦ γ(g♯j).

Since γ is a morphism in the category DFPSet, γ(g♯j) = γ((ψL)L∈I · g♯j) = (ψL)L∈I ·
γ(g♯j) = (ψ♯L′)−1 ◦ γ(g♯j). It follows that Aut

Im(g♯j)
(L′) ⊆ Aut

Im(γ(g♯j))
(L′). This gives

Im(γ(g♯j)) ⊆ Im(g♯j). We obtain the following commutative diagram.
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R1 R1/m
′
j

Im(g♯j)

R2 R2/n
′
ij

g̃j
♯

∼

γ(g♯j)

This gives a morphism of k-algebras (g̃j
♯)−1 ◦ γ(g♯j) : R2 → R1/m

′
j . Since R1/m

′
j = kj , the

universal property of the product gives a k-algebra morphism ξ♯ : R2 → R1. We show that
γ = − ◦ ξ♯. For all 1 ≤ j ≤ n1 and z ∈ R2

g♯j ◦ ξ
♯(z) = g♯j((g̃1

♯)−1 ◦ γ(g♯1)(z), . . . , (g̃n1

♯)−1 ◦ γ(g♯n1
)(z)))

= g̃j
♯((g̃j

♯)−1 ◦ γ(g♯j)(z)) = γ(g♯j)(z).
(4)

Let g♯ : R1 → Ω be a k-algebra morphism. Lemma 3.12 implies that g♯ factors through
R1/m

′
j for some 1 ≤ j ≤ n1. Lemma 3.9 shows that exists a finite Galois extension

k ⊆ L′ ⊆ Ω such that Im(g♯), Im(g♯j) ⊆ L′. Since Im(g♯), Im(g♯j) both factor through

R1/m
′
j , there exists some ψ♯ ∈ Autk(L

′) such that g♯ = (ψ♯)−1 ◦ g♯j . Note that there exists

(ψ♯L)L∈I ∈ lim←−L∈I Autk(L) such that ψ♯L′ = ψ♯. Now (4) and Lemma 3.20 give

γ(g♯) = γ((ψ♯)−1◦g♯j) = γ((ψL)L∈I ·g♯j) = (ψL)L∈I ·γ(g♯j) = (ψ♯)−1◦γ(g♯j) = (ψ♯)−1◦g♯j◦ξ
♯ = g♯◦ξ♯.

This finishes the proof.

The proof of the lemma below is based on the proof of [Zar15, Theorem 3.17].

Lemma 3.29. The functor F : FÉt/ Spec k → DFPSet is essentially surjective.

Proof. Let S be an object of DFPSet. If S is empty, then S ≃ F (∅). Assume S is
nonempty. Then S =

⊔n
i=1 Si, where Si denote the orbits of the action of π1(Spec k, s) on

S. Through the isomorphism from Lemma 3.19, we consider S as a finite, discrete Autk(Ω)-
set. Fix elements s1 ∈ S1, . . . , sn ∈ Sn. Consider some 1 ≤ j ≤ n. The constant map
Autk(Ω) → S sending ψ♯ to sj is continuous. Since the identity morphism is continuous,
the universal property of the product gives a continuous map Autk(Ω) → Autk(Ω) × S
that sends ψ♯ to (ψ♯, sj). Since S is a discrete Autk(Ω)-set, we get a continuous map
Autk(Ω) → Autk(Ω) × S → S, sending ψ♯ to ψ♯ · sj . Thus, the stabilizer (Autk(Ω))sj
of sj is an open and closed subset, since S carries the discrete topology. Denote this
stabilizer by Hj . Then [Mil22, Theorem 7.13] gives a field extension k ⊆ ΩHj ⊆ Ω. Since
Hj is open and Ω is the separable closure, ΩHj is a finite, separable field extension of k,

which we denote by kj . Denote by ĩj
♯
: kj → Ω the inclusion. Consider the étale cover

Y = Spec(k1 × . . . × kn) of Spec k. We show that F (Y ) ≃ S in the category DFPSet.
The bijection HomSpec k(SpecΩ, Y ) ≃ Homk-Alg(k1 × . . .× kn,Ω), endows the latter with
the structure of a finite, discrete Autk(Ω)-set. Let g♯ ∈ Homk-Alg(k1 × . . . × kn,Ω). For

any 1 ≤ j ≤ n, denote by i♯j : k1× . . .× kn → Ω the map ĩj
♯ ◦π♯j . Here π

♯
j : k1× . . .× kn →

k1 × . . . × kn/mj
′ = kj denotes the projection map. By Lemma 3.12, g♯ factors through

kj for some j. It follows that there exists ψ♯ ∈ Autk(Ω) such that ψ♯ ◦ g♯ = i♯j . Consider

the map γ : Homk-Alg(k1 × . . . × kn,Ω) → S given by sending g♯ as above to ψ♯ · sj . We
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show that this map is well-defined. Let ψ♯2 ∈ Autk(Ω) such that ψ♯2 ◦ g♯ = i♯j . Then

(ψ♯ ◦ (ψ♯2)−1) ◦ i
♯
j = i♯j . It follows that ψ

♯ ◦ (ψ♯2)−1 ∈ Hj . This gives

(ψ♯ ◦ (ψ♯2)
−1) · sj = sj

((ψ♯2)
−1 · ψ♯) · sj = sj

ψ♯ · sj = ψ♯2 · sj .

We conclude that γ is well-defined. Now, we show that this map is a morphism of Autk(Ω)-

sets. Let g♯ ∈ Homk-Alg(k1 × . . . × kn,Ω) be as above and consider some ψ♯3 ∈ Autk(Ω).

Then ψ♯ ◦ ψ♯3 ◦ (ψ
♯
3)
−1 ◦ g♯ = i♯j . From Lemma 3.20, it follows that

γ(ψ♯3 · g
♯) = (ψ♯ ◦ ψ♯3) · sj = (ψ♯3 · ψ

♯) · sj = ψ♯3 · (ψ
♯ · sj) = ψ♯3 · γ(g

♯).

Finally, we show that γ is a bijection. Let z ∈ S, then z ∈ Sj for some j. Thus, there

exits ψ♯ ∈ Autk(Ω) such that ψ♯ · sj = z. It follows that γ((ψ♯)−1 ◦ i♯j) = ψ♯ · sj = z. Let

g♯1, g
♯
2 ∈ Homk-Alg(k1 × . . . × kn,Ω) such that γ(g♯1) = γ(g♯2). Denote ψ♯1, ψ

♯
2 ∈ Autk(Ω)

such that ψ♯1 ◦ g
♯
1 = i♯j1 , ψ

♯
2 ◦ g

♯
2 = i♯j2 . Since ψ

♯
1 · sj1 = ψ♯2 · sj2 , it follows that j1 = j2. Then

(ψ♯1)
−1 · ψ♯2 · sj1 = sj1 . It follows that (ψ

♯
1)
−1 · ψ♯2 ∈ Hj1 . This gives

((ψ♯1)
−1 · ψ♯2) ◦ i

♯
j1

= i♯j1

(ψ♯2 ◦ (ψ
♯
1)
−1) ◦ i♯j1 = i♯j1

(ψ♯1)
−1 ◦ i♯j1 = (ψ♯2)

−1 ◦ i♯j1
g♯1 = g♯2.

We conclude that γ is bijective. Since S and Homk-Alg(k1 × . . . × kn,Ω) both carry the
discrete topology, it is a homeomorphism. This finishes the proof.

Lemma 3.28 and Lemma 3.29 prove Theorem 2.42 in the case of Spec k as stated below.

Theorem 3.30. The functor F : FÉt/ Spec k → DFPSet is an equivalence of categories.
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4 Elliptic curves

Throughout all this section, let k be an algebraically closed field of characteristic 0. By
an elliptic curve over k we mean a smooth projective 1-dimensional variety E over k of
genus 1, equipped with a geometric point O ∈ E(k) which we call the point at infinity.
We also write E/k to emphasize its base field. Elliptic curves have an underlying group
structure, with the identity being the point O.

To calculate the étale fundamental group of an elliptic curve (E,O), let us first describe
the category of finite étale covers FÉt/E.

Let E/k be an elliptic curve and consider the map

[n] : E → E

P 7→ nP.

This map maps P to P + . . .+ P n-times, where n is an integer.

Definition 4.1. [Sil09, page 66] An isogeny φ is a morphism

φ : E1 → E2

between elliptic curves E1/k and E2/k satisfying φ(O1) = O2, where O1 and O2 are the
points at infinity of E1 and E2, respectively.

Example 4.2. The map [n] is an isogeny.

This specific isogeny, the multiplication by nmap, will be used repeatedly when computing
the fundamental group of an elliptic curve. In order to do this, we need to introduce some
results which will become useful later. We will present these results without proof, as the
proofs are out of scope for this paper. However, the interested reader can find all of the
proofs in [Kun17].

Proposition 4.3. [Kun17, Proposition 4,14] Let E/k be an elliptic curve. Then the map
[n] is a finite étale map.

We can use these maps to create an inverse system, by using the following propositions.

Proposition 4.4. [Kun17, Proposition 4.13] Let φ : X → E be a finite étale cover where
X is a k-scheme and E/k an elliptic curve. If X is connected, then X is also an elliptic
curve.

Lemma 4.5. [Kun17, Lemma 5.11] Let φ : X → E be a finite étale cover where X/k and
E/k are elliptic curves. Then (X,φ) is a Galois cover.

These two propositions tell us that if we have a finite étale map X → E (as schemes) and
E is an elliptic curve, then X is an elliptic curve and φ : X → E is a Galois cover.

In the following proposition we introduce the concept of dual isogeny.

Proposition 4.6. [Sil09, page 86] Let φ : E1 → E2 be an isogeny of elliptic curves, with
degφ = n. Then there exists a unique isogeny φ̂ : E2 → E1 such that

φ̂ ◦ φ = [n].

The unique isogeny described in Proposition 4.6 is called the dual isogeny.
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Before we begin computing the étale fundamental group of an elliptic curve, let us define
one more term.

Let {Xβ}β∈I be a collection of Galois covers for E.

Definition 4.7. [Kun17, Remark 5.9] A subcollection of Galois covers {Xα}α∈J ∈ FÉt/E
where J ⊂ I is said to be cofinal if for any Xβ, β ∈ I, there exists a cover Yα, α ∈ J and
a map φ : Xβ → Yα making the following diagram

Xβ Yα

E

φ

commute.

In this case we say that the map Xβ → E is dominated by the map Yα → E.

Example 4.8 (Computing the étale fundamental group of an elliptic curve). [Kun17,
Proposition 5.12] Let E/k an elliptic curve. In this example we compute the étale funda-
mental group of an elliptic curve in several steps.

Firstly, consider the multiplication by n map given at the beginning of this section. By
Proposition 4.3, we know it is an étale map. Note that

[n] ◦ [m] : E → E

P 7→ nmP

thus [n] ◦ [m] = [nm]. This allows us to define an inverse system, indexed by divisibility as
in definition 2.36. In this sytem, we consider the pointed Galois covers to be (E,O) where
O denotes the point at infinity. To see this, let the category be the category FÉt/E, of
finite étale covers over E and Λop = Z>0 (according to definition 2.36). We have that for
each n, k ∈ Z>0, with n ≤ k there are elliptic curves Ek, En such that there is a morphism

φn,k : Ek → En

P 7→ k

n
P

if k = nm for some m ∈ Z>0. This morphism satisfies the identity property in definition
2.36, as

φn,n(P ) = P.

Note that we have that φk,nk = [n]. Therefore, since in our direct system Ei = E for all
i ∈ Z>0 then for n ≤ m we have the following diagram

E E

E

[n]

[nm]
[m]

which commutes because [n] ◦ [m] = [nm].

To see that the system is universal, consider an arbitrary connected finite étale cover
e : X → E. By Proposition 4.4, X is an elliptic curve, and e is an isogeny. Therefore by
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Proposition 4.6, there exists ê : E → X such that ê ◦ e = [n]. This states exactly that
(E, [n]) dominates the cover e : X → E, showing the universality of the system.

To compute the étale fundamental group, we consider the group of automorphisms of these
étale covers, as

πét1 (E,O) = lim
←−
n

Aut(E, [n]).

Claim: The group of automorphisms Aut(E, [n]) is isomorphic to ker[n]. The proof follows
from [Kun17, Lemma 5.11] which in turn uses [Sil09, Sections 4, 6]. Consider the isogeny
[n] : E → E and the map

τP : E → E

Q 7→ Q+ P

where P ∈ ker[n]. We have that their composition [n] ◦ τP = [n] as

[n] ◦ τP (Q) = [n](P +Q) = nQ+ nP = nQ

since P ∈ ker[n]. Moreover, we can construct an inverse for τP , namely τ−P . This implies
τP ∈ Aut(E, [n]). Consider the following homomorphism of groups

ξ : ker[n]→ Aut(E, [n])

P → τP .

This homomorphism is injective as ker ξ = {O} and therefore

ker[n]/ ker ξ ∼= ker[n] ∼= ξ(ker[n])

so ker[n] is isomorphic to some subgroup of Aut(E, [n]).

To show ξ is surjective and thus ker[n] ∼= Aut(E, [n]), consider the map ψ ∈ Aut(E, [n]).
Note that

τ−ψ(O) ◦ ψ

is an isogeny as τ−ψ(O) ◦ ψ(O) = ψ(O) − ψ(O) = O. Therefore we can write this isogeny
as φ, i.e.

τ−ψ(O) ◦ ψ = φ.

Note that both ψ and τ−ψ(O) are bijective as ψ is an automorphism and the map τψ(O) is
an inverse for τ−ψ(O), thus φ is bijective. Therefore we can rewrite ψ as

ψ = τψ(O) ◦ φ.

Moreover φ is a group homomorphism because it is an isogeny, hence it is an isomorphism,
and specifically an isomorphism of covers implying the diagram

E E

E

φ

[n[ [n]
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commutes. Thus,
[n] ◦ φ = [n]

and we can see that for a point Q ∈ E then [n] ◦ φ(Q) = nφ(Q) = nQ if and only if
φ(Q) = Q implying that φ is the identity. Thus we have that

ψ = τψ(O)

and hence ξ is surjective.

It follows from [Sil09, Corollary 6.4b] that

ker[n] ∼= (Z/nZ)2.

Putting it all together, we have that

πét1 (E,O) = lim
←−
n

Aut(E, [n]) ∼= lim
←−
n

((Z/nZ)2, f)

where f is the quotient map

f : Z/nZ→ (Z/nZ)/(Z/kZ) = (Z/mZ)

for n = mk.

This is by definition the profinite completion Ẑ2 of Z2 hence

πét1 (E,O) ∼= Ẑ2.

Remark 4.9. It is worth noting that we computed the étale fundamental group of an
elliptic curve in the case where the field has characteristic 0. For char k = p > 0 with p
prime, we have the following. Denote by Zp the p-adic integers, then

πét1 (E,O) ∼=
∏
l ̸=p

Z2
l × Zp

where the product is taken over all primes l ̸= p. This result together with its proof can be
found in [Kun17, Proposition 5.14].

4.1 Comparison with the topological fundamental group

Once we compare the étale fundamental group with the topological fundamental group of
an elliptic curve we get a quite nice comparison. This is described as follows.

Example 4.10. Consider an elliptic curve E/C. It can be shown that with the Euclidean
topology this curve is homeomorphic to a torus [Sil09, Proposition 3.6 b], see Figure 1a.

Intuitively, the fundamental group of the torus is generated by two loops, which are the
pink and blue loops shown in Figure 1b. Both figures are generated using [The21].

Thus, the topological fundamental group of E(C) centered at O under the Euclidean
topology is isomorphic to the topological fundamental group of the torus which is Z2

[Arm04, page 100].

Therefore in a way, the étale and the topological fundamental group, in the case of elliptic
curves, are comparable.

29



(a) Torus

(b) Generators of the topological fundamen-
tal group of the torus
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5 Étale cohomology

As stated, the Zariski topology has too little open subsets, making the topological funda-
mental group not very interesting. The inadequacy of the Zariski topology becomes even
more evident by Grothendiecks Vanishing Theorem: if X is an irreducible topological
space, and F a constant sheaf, then

H i(X,F) = 0,

which make the cohomology of the constant sheaves not very interesting. This is (one of)
the reasons one wishes to develop a more interesting cohomology theory for varieties.
This can be done in a very similar way as in the classical sense: we construct a category of
sheaves for the étale topology on X which is an abelian category and has enough injectives,
thus giving us a way to define étale cohomology as right derived functors.
We will work towards a link between étale cohomology and the étale fundamental group.

5.1 The étale site

Definition 5.1 (Site). A site is a category C admitting fiber products, together with for
each object U of C a set of families of maps (Ui → U)i∈i, called coverings of U , such that

• (identity axiom) for any U , the family (idU ) is a covering of U ;

• (stability axiom) for any covering (U → Ui)i∈I of U and any morphism V → U , the
familiy (Ui ×U V → V )i∈I is a covering of V ;

• (transitivity axiom) if (Ui → U)i∈I is a covering of U and if for each i ∈ I, the
family (Vij → Ui)j∈Ji is a covering of Ui the family (Vij → U)i,j is a covering of U .

We will often denote a site by its underlying category C.

Definition 5.2 (Presheaf). A presheaf of sets F (resp. groups, resp. rings) on a site C
is a functor F : Cop → Set (resp. F : Cop → Grp, resp. F : Cop → Ring). A morphism
of presheaves F → G is just a natural transformation.

Definition 5.3 (Sheaf). A sheaf of sets (resp. groups, resp. rings) is a presheaf of sets
(resp. groups, resp. rings) such that it satisfies the sheaf condition: the sequence

F (U)
∏
i∈I

F (Ui)
∏

(i,j)∈I×I

F (Ui ×U Uj)

is exact for every covering (Ui → U)i∈I . A morphism of sheaves F → G is a natural
transformation.

Definition 5.4 (Surjective maps). Let X be a variety or a scheme. A family of regular
maps (φi : Ui → U) is called surjective if

U =
⋃
i

φi(Ui)

Example 5.5. Let X be a topological space. We associate to X a category Op(X) with
as objects the opens of X and a morphism U → V if and only if U ⊆ V . For any object U
of Op(X) we declare (Ui → U)i∈I covering if

⋃
i U = U . This is a Grothendieck topology

on Op(X) and a presheaf is a sheaf for this site if and only if it is a sheaf on the topological
space X. This follows from the fact that Ui ×U Uj = U ∩ V .
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Definition 5.6 (Small étale site). We define Xét to be the site with underlying category
Ét/X with objects étale morphisms U → X and arrows V → U making the triangle

U V

X

commute. The covering families are the surjective families of étale morphisms. We call
Xét the (small) étale site with Sh(Xét) its category of sheaves.

Note that the étale site has as underlying category Ét/X, rather than Sch/X, which is
often called the big étale site XÉt when endowed with the étale topology. This is because
one can define the category of sheaves over Xét but not over XÉt.

Proposition 5.7. The category Sh(Xét) is an abelian category.

Proof. See [Mil13, Proposition 7.8].

Proposition 5.8. The category Sh(Xét) has enough injectives.

Proof. See [Mil13, Proposition 8.12].

5.2 Étale cohomology

By the observation that Sh(Xét) is an abelian category and has enough injectives, we can
define étale cohomology similarly as how one defines sheaf cohomology in the classical
sense.

Definition 5.9 (Cohomology). We define H i(Xét,−) to be the i’th right derived functor
of

Sh(Xét)→ Ab : F 7→ Γ(X,F),

where Ab is the category of abelian groups.

This is well defined because the global sections functor is left exact.

Proposition 5.10. We have the following properties of H i(Xét,−):

i) For any sheaf F , H0(Xét,F) = Γ(X,F),

ii) If I is injective, then H i(Xét, I) = 0 for each i > 0,

iii) A short exact sequence of sheaves

0→ F ′ → F → F ′′ → 0

gives a long exact sequence in a functorial manner

0→ H0(Xét,F ′)→ H0(Xét,F)→ H0(Xét,F ′′)→ H1(Xét,F ′)→ · · ·

The properties i-iii listed in Proposition 5.10 determine the functors H i(Xét,−) up to
unique isomorphism.
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5.3 Principal homogeneous spaces

Definition 5.11 (Principal homogeneous space). Let G be a sheaf of groups on Xét and
S be a sheaf of sets on Xét on which G acts on the right i.e. a map S × G → S which
defines a right action G(U)× S(U)→ S(U) : (g, s) 7→ sg for every object U in Xét. Then
S is called a principal homogeneous space for G if

1. there is an étale covering (Ui → X)i∈I of X such that for all i ∈ I, S(Ui) ̸= ∅ in
which case we say that the cover splits S,

2. for every U → X étale and s ∈ Γ(U,S) = S(U), the map G|U → S|U , g 7→ sg is an
isomorphism of sheaves.

Definition 5.12 (Galois coverings). Let G be a finite group and Y → X a finite étale
morphism such that G acts on Y on the right. Then Y → X is called a Galois cover with
group G if the morphism ∐

g∈G
Y → Y ×X Y : (y, g) 7→ (y, yg)

is an isomorphism.

Lemma 5.13. Let G be a finite group and G the sheafification of the constant presheaf of
G. Then we have a bijection

{Galois coverings of X with group G} ≃ { principal homogeneous spaces for G}

Proof. See [Mil13, Example 11.3]

Theorem 5.14. Let G be a finite group and G the sheafification of the constant presheaf
of G. If X is connected there is a canonical isomorphism

H1(Xét,G) ≃ Homcont(π1(X,x), G),

where by Homcont we mean the continuous homomorphisms where G carries the discrete
topology.

Proof. If Ȟ1 denotes the first ech cohomology group and U = (Ui → X)i an étale covering
of X, we have

H1(Xét,G) ≃ Ȟ1(Xét,G)
:= lim−→

U
Ȟ1(Xét,U)

≃ lim−→
U
{principal homogeneous spaces for G split by U}

≃ {principal homogeneous spaces for G}
≃ {Galois coverings of X with group G}
≃ Homcont(π

ét
1 (X,x), G).

The first isomorphism follows from [Mil13, Theorem 10.2], the second [Mil13, Proposition
11.1] the fourth is Lemma 5.13 and the last is [Mil13, Example 11.3]
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Example 5.15. Let k be an algebraically closed field. Then by Lemma 3.19 we have

πét1 (Spec k, x) ≃ Gal(ksep/k) = 0

and thus we have by Theorem 5.14, since we have a unique homomorphism 0→ G for every
finite G, that the cohomology group H1(Spec k,G) = 0. In particular, we can conclude
immediately from the definition that there is no nontrivial étale cover of Spec k.

Example 5.16. Let k = R be the real numbers. Then we have Rsep = C with [C : R] = 2.
It follows that

πét1 (SpecR, x) ≃ Gal(C/R) ≃ Z/2Z.

If we have a continuous homomorphism φ : Z/2Z → G for some finite group G, we need
that φ : 0 7→ 0G and that φ(1)2 = 0G. Thus φ can be identified with an element g ∈ G
such that g2 = 0G. Therefore

H1(SpecRét,G) ≃ {g ∈ G | g2 = 0G}.

In particular, we have constant sheaves for which H1(Xét,G) is nontrivial.
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